
1. Introduction to Strings

A string in C++ is a sequence of characters used to store and manipulate text such as words, sentences, or
symbols. Strings are one of the most commonly used data types in programming because most real-world
programs deal with textual data like names, messages, passwords, and commands.

In C++, strings can be handled in two ways:

1. Using character arrays (C-style strings)
2. Using the string class from the Standard Template Library (STL)

2. Need for Strings

Without strings, programs would not be able to handle textual information effectively. Strings are required for:

 Displaying messages
 Storing names and addresses
 User input and output
 File handling
 Data processing

Strings allow programs to communicate with users in a meaningful way.

3. Character Arrays (C-Style Strings)

In C++, strings can be represented using character arrays. A C-style string is an array of characters terminated
by a null character ('\0').

Example
char name[10] = "Ravi";

Here, the last character is automatically '\0', which marks the end of the string.

4. Declaration and Initialization of Strings

Declaration
char str[20];

Initialization
char str[] = "Hello";

Each character occupies one byte of memory.

5. Input and Output of Strings

Using cin
char name[20];
cin >> name;

Note: cin stops reading at whitespace.

Using gets() and puts() (Not recommended)

Using getline()
string name;
getline(cin, name);

This reads a complete line including spaces.

6. String Handling Functions

C++ provides several functions to manipulate strings (from <cstring> library):

 strlen() – length of string
 strcpy() – copy string
 strcat() – concatenate strings
 strcmp() – compare strings

Example
strlen("Hello"); // returns 5

7. The string Class in C++

The string class provides a safer and more flexible way to work with strings.

Declaration
string s1 = "Hello";

Advantages

 Dynamic size
 Built-in functions
 Easy manipulation
 Safer than character arrays

8. Common String Operations Using string Class

Some commonly used operations:

 length() or size()
 append()
 compare()
 substr()
 find()

Example
string s = "C++";
s.append(" Programming");

9. String Concatenation

Using + operator
string s1 = "Hello";
string s2 = "World";
string s3 = s1 + " " + s2;

This joins strings easily.

10. Accessing Individual Characters

Characters in a string can be accessed using index.

Example
string s = "Hello";
cout << s[0];

Index starts from 0.

11. Comparison of Strings

Using compare()
if (s1.compare(s2) == 0)

Using relational operators
if (s1 == s2)

12. Passing Strings to Functions

Strings can be passed to functions by value or reference.

Example
void show(string s)
{
 cout << s;
}

13. Array of Strings

Using Character Arrays
char names[3][10] = {"Ram", "Shyam", "Mohan"};

Using string Class
string names[3] = {"Ram", "Shyam", "Mohan"};

14. Difference Between C-Style Strings and string Class

C-Style Strings string Class

Fixed size Dynamic size

Complex functions Easy functions

Less safe More secure

15. Common Errors in Strings

 Buffer overflow
 Missing null character
 Using cin for full sentences
 Incorrect indexing

16. Best Practices for Using Strings

 Prefer string class
 Use getline() for full input
 Avoid unsafe functions
 Validate string size

17. Applications of Strings

Strings are used in:

 Text editors
 Web development
 File systems
 Database handling
 Game development

18. Advantages of Strings

 Easy text handling
 User interaction
 Data representation
 Program readability

19. Limitations of Strings

 C-style strings are unsafe
 Memory issues if misused
 Performance overhead in large strings

20. Conclusion

Strings are an essential part of C++ programming. They allow handling and manipulation of text data
efficiently. The string class provides powerful features that make programming easier, safer, and more readable.
Mastery of strings is crucial for developing real-world C++ applications.

